Loading...
机构名称:
¥ 1.0

摘要:人工智能(AI)工作量的计算需求不断增长,已大大升级了数据中心的能源消耗。AI驱动的应用程序,包括深度学习,自然语言处理和自主系统,都需要实质性的计算能力,主要由图形处理单元提供。这些GPU在提高计算效率的同时,有助于大量的功耗和热量产生,因此需要采取先进的冷却策略。本研究提供了对AI特异性硬件功率使用的定量评估,重点是NVIDIA H100 GPU。该分析将AI数据中心的能源消耗与美国普通家庭用力进行了比较,这表明单个AI机架的消耗大约是典型家庭能量的39倍。此外,一项可伸缩性分析估计,大约87个新的超尺度数据中心消耗了纽约市消耗的电力。这强调,随着AI数据中心的快速增长,大规模的部署可能导致全球能源需求前所未有的增长。此外,该研究还评估了耗散热量对冷却需求的影响,强调了对节能冷却溶液的需求,包括液体和浸入冷却技术。未来的研究方向包括节能AI模型,可再生能源整合,可持续的AI加速器设计以及智能的工作负载优化,以减轻大规模AI采用的环境影响。I.但是,量化AI硬件的功率和冷却​​需求的研究仍然有限。本研究为设计更可持续的AI驱动数据中心提供了关键见解,同时保持高性能计算效率。关键字:AI数据中心,功耗,耗散耗散,能效,数据中心冷却,GPU计算,城市能源影响,可持续性AI,高性能计算,高尺度基础架构,热量管理,工作负载,优化,碳足迹减少,可再生能源能源整合,可再生能源整合,AI ACELERASTOR,AI ACCELERARSTORSRATOR,AI ACCELERARSTORS。简介人工智能(AI)和机器学习(ML)应用具有重塑行业,需要高性能计算基础架构。AI培训模型的指数增长导致数据中心内能耗的前所未有。根据国际能源机构2023年的一份报告[1],数据中心占全球电力需求的近1%,预计AI工作量将大大增加这一份额。科技巨头,例如Google,Amazon和Microsoft,正在积极投资于AI特异性芯片并优化数据中心冷却以减轻能源足迹。这项研究提供了对AI特异性硬件(尤其是NVIDIA H100 GPU)中功率使用情况的定量评估,并评估了其对城市能源基础设施的影响。随着AI数据中心的扩展,对电网的影响成为主要问题。本研究的目的是:•比较AI基础设施的电力使用与家庭用电量。•评估AI数据中心的可伸缩性和可持续性。•分析散热和冷却要求。II。II。关键术语的定义A.功率和能量功率(P):功率是数据中心中的机架或电气设备消耗能量的速率。就像每时刻消耗的能量量

国际科学创新研究杂志

国际科学创新研究杂志PDF文件第1页

国际科学创新研究杂志PDF文件第2页

国际科学创新研究杂志PDF文件第3页

国际科学创新研究杂志PDF文件第4页

国际科学创新研究杂志PDF文件第5页