准确的肿瘤分类对于选择有效治疗至关重要,但是当前方法有局限性。标准肿瘤分级基于细胞分化对TUMOR进行分类,不建议将其作为独立手术,因为某些差异良好的肿瘤可能是恶性的。通过单细胞测序评估肿瘤异质性评估提供了深刻的见解,但可能会昂贵,并且仍然需要大量的手动干预。 许多现有的用于肿瘤数据的统计机器学习方法仍然需要对MRI和组织疗法数据进行复杂的预处理。 在本文中,我们建议建立在模拟肿瘤进化的数学模型上(OTAńSKI(2017)),并生成用于肿瘤分类的人工数据集。 使用归一化熵估算肿瘤异质性,其阈值将肿瘤视为具有高或低异质性。 我们的贡献是三重的:(1)从人工数据中的剪切和图生成过程,(2)肿瘤特征的设计,以及(3)构建块图神经网络(BGNN),这是一种基于图神经网络的方法,以预测肿瘤异质性。 表现出的结果表明,所提出的特征和模型的组合在人为生成的数据上产生了出色的结果(89。 测试数据的精度为67%)。 尤其是与AI辅助分级和空间转录组学的新兴趋势保持一致,我们的结果表明,通过出生(例如KI-67增殖指数)丰富传统的分级方法和死亡标记物和死亡标记物可以改善异质性预测和增强肿瘤分类。通过单细胞测序评估肿瘤异质性评估提供了深刻的见解,但可能会昂贵,并且仍然需要大量的手动干预。许多现有的用于肿瘤数据的统计机器学习方法仍然需要对MRI和组织疗法数据进行复杂的预处理。在本文中,我们建议建立在模拟肿瘤进化的数学模型上(OTAńSKI(2017)),并生成用于肿瘤分类的人工数据集。肿瘤异质性,其阈值将肿瘤视为具有高或低异质性。我们的贡献是三重的:(1)从人工数据中的剪切和图生成过程,(2)肿瘤特征的设计,以及(3)构建块图神经网络(BGNN),这是一种基于图神经网络的方法,以预测肿瘤异质性。表现出的结果表明,所提出的特征和模型的组合在人为生成的数据上产生了出色的结果(89。测试数据的精度为67%)。尤其是与AI辅助分级和空间转录组学的新兴趋势保持一致,我们的结果表明,通过出生(例如KI-67增殖指数)丰富传统的分级方法和死亡标记物和死亡标记物可以改善异质性预测和增强肿瘤分类。
主要关键词