Loading...
机构名称:
¥ 1.0

汽车场景的快速进步促使人们广泛地关注创建创新,从而增加驾驶住宿以及专注于安全性。高级驾驶员帮助框架(ADA)已成为实现这些目标的重要空间。adas,包裹着诸如起飞训练,逃避逃避和多才多艺的旅程控制之类的元素,在调节不幸和改善大街福利方面是必不可少的部分。最近,AI(ML)方法与ADAS的结合开了新的发展道路。基于规则的算法在传统的ADAS系统中很常见,该系统可能在复杂而动态的驾驶环境中挣扎。AI具有从信息中调整和获得设计的能力,可以实现前景的有希望的变化。本文研究了ADA和AI之间的合作能量,意思是计划和评估使用两个空间质量的高级框架。必不可少的目标是通过减少AI计算的力来升级ADA功能的精度,强度和响应能力。通过使用不同且广泛的数据集,合并出血边缘预处理方法并利用不同的ML模型,我们尝试解决常规ADAS框架的限制,并为更精明和多功能的驾驶体验做准备。本文从最终的细分市场中展开,首先是对当前关于ADA和AI的自动应用程序的撰写的调查。之后,策略领域微妙的数据集,预处理步骤以及ML计算的选择和执行。结果和对话检查了提议的框架的呈现,揭示了对其生存能力和可能发展区域的见解。该论文通过总结关键的发现并提出了未来探索的道路来关闭,从而突出了将AI纳入ADA的非凡效果,以使其更加安全,更出色。

使用机器学习的高级驱动程序辅助系统

使用机器学习的高级驱动程序辅助系统PDF文件第1页

使用机器学习的高级驱动程序辅助系统PDF文件第2页

使用机器学习的高级驱动程序辅助系统PDF文件第3页

使用机器学习的高级驱动程序辅助系统PDF文件第4页

使用机器学习的高级驱动程序辅助系统PDF文件第5页