Loading...
机构名称:
¥ 1.0

概率机器学习利用可控的随机性来编码不确定性并启用统计建模。利用量子真空噪声的纯粹随机性,这是由于电磁磁场的流动,已经对高速和能量的随机光子元素表现出了希望。尽管如此,可以控制这些随机元素以编程可能的机器学习算法的光子计算硬件受到限制。在这里,我们实现了由可控的随机光子元件组成的光子概率计算机 - 光子概率神经元(PPN)。我们的PPN在带有真空级注入偏置的偏见的双态光学参数振荡器(OPO)中进行。然后,我们使用电子处理器(FPGA或GPU)进行了一个测量和反馈循环,以解决某些概率机器学习任务。我们展示了MNIST手写数字的概率推断和图像生成,它们是判别和生成模型的代表性示例。在两个实现中,量子真空噪声都用作随机种子来编码样品的分类不确定性或概率生成。此外,我们为通向全光概率计算平台的路径提出了一条路径,估计的采样速率约为1 Gbps,能源消耗约为5 FJ / MAC。我们的工作为可扩展,超快和能量良好的概率机器学习硬件铺平了道路。

使用量子真空噪声的光子概率机器学习

使用量子真空噪声的光子概率机器学习PDF文件第1页

使用量子真空噪声的光子概率机器学习PDF文件第2页

使用量子真空噪声的光子概率机器学习PDF文件第3页

使用量子真空噪声的光子概率机器学习PDF文件第4页

使用量子真空噪声的光子概率机器学习PDF文件第5页