摘要:映射有助于功能的蛋白质构象的整体,可以用小分子药物来靶向,这仍然是一个重大的挑战。在这里,我们探讨了变异自动编码器的使用来减少蛋白质结构合奏生成问题中维度的挑战。我们将高维蛋白质结构数据转换为连续的,低维的表示,在以结构质量度量为导向的空间中进行搜索,然后使用由采样的结构信息引导的Rosettafold来生成3D结构。我们使用这种方法为癌症相关的蛋白质K-RAS生成合奏,在可用的K-Ras晶体结构的子集上训练VAE和MD模拟快照,并评估接近与训练中与晶体结构接近的取样程度。我们发现,我们的潜在空间采样程序迅速生成具有高结构质量的合奏,并且能够在固定晶体结构的1Å内进行采样,其一致性高于MD模拟或Alphafold2预测。采样结构充分概括了固定的K-RAS结构中的隐性口袋,以允许小分子对接。
主要关键词