建筑环境的视觉特征会影响人们的感知和体验城市。很长一段时间以来,许多研究都检查了城市中的视觉感知。由于技术的进步和相关数据的扩散(例如,街景图像,地理位置照片,视频,视频,虚拟现实和空中图像),这种努力在近年来加速了。尚未就此主题进行全面的系统审查论文,以揭示一系列总体研究趋势,局限性和未来的研究机会。这种遗漏是由于很难回顾有关此流行主题的大量相关论文的困难。在这项研究中,我们利用机器学习技术(即自然语言处理和大语言模型)进行半自动进行审查过程,并审查了393篇相关论文。通过评论,我们发现这些论文可以分为城市的物理方面:绿化和水,街道设计,建筑设计,景观,公共空间以及整个城市。我们还透露,许多研究以越来越多地利用大数据和先进技术的趋势进行了定量分析,例如街道视图图像和深度学习模型的组合。的局限性和研究差距也被确定为:(1)在研究领域,样本量和属性方面的范围有限; (2)低质量的主观和视觉数据; (3)需要更加控制和复杂的方法来推断
主要关键词