摘要 - 神经网络(NNS)现在广泛用于自主系统中的感知处理。来自摄像机和激光镜等传感器的数据,在由NNS处理后,构成了自治功能的核心的饲料控制算法。此类NN在图形处理单元(GPU)上实现,现代GPU可以分配到多个虚拟机中,每个机器都实现了单独的NN。给定一个具有多个NN的自主系统,每个NN应该如何尺寸和实施它们的GPU进行最佳分区?在这项工作中,我们研究了多种GPU分区技术,其目的是最佳和安全的系统级控制性能。I. I Tratsuction的进步深度学习技术导致自主系统中神经网络(NNS)的广泛部署。由于其任务关键性,验证驾驶系统通常需要NN组件的高精度。但是,达到最新准确性通常会导致计算和记忆需求增加。尽管努力压缩NNS提高效率(例如,[1]),在官能系统的内在空间,能源和成本限制中满足准确性要求的挑战仍然很大。此外,此类系统的总体性能,包括感应,决策和驱动,不仅受到其NN组件的准确性,而且还受到控制系统对NN输出不确定性的敏感性的影响。这项工作的贡献:我们解决自主系统中NNS的资源分配,以优化安全性和控制性能。,深度估计)。由于NN估计错误的影响在整个系统上都有不同,因此对整体系统性能进行优化需要一种细微的方法来分配NN,优先考虑关键功能,同时为他人分配足够的资源。具体来说,我们专注于用于状态估计的NN(例如由于可以对GPU和现代GPU进行分配,因此分配问题会减少到NN的尺寸和GPU分区。我们提出了三种用于NN尺寸的启发式方法,并表现出与详尽的搜索相比,其综合努力明显少得多。据我们所知,没有先前的工作将自主系统的控制性能与NNS的尺寸或GPU分配有关。相关工作:嵌入式NNS的记忆,计算和能量需求的选择存在广泛的文献。值得注意的策略包括开发较小,更有效的NNS [1],[2]和实施早期出口
主要关键词