对抗性假设检验和限制测量的量子 Stein 引理
机构名称:
¥ 3.0

回想一下具有两组概率分布 P 和 Q 的经典假设检验设置。研究人员从分布 p ∈ P 或分布 q ∈ Q 中接收 n 个 iid 样本,并想要确定这些点是从哪个集合中采样的。众所周知,误差下降的最佳指数速率可以通过简单的最大似然比检验来实现,该检验不依赖于 p 或 q,而只依赖于集合 P 和 Q。我们考虑该模型的自适应泛化,其中 p ∈ P 和 q ∈ Q 的选择可以在每个样本中以某种方式更改,这取决于先前的样本。换句话说,在第 k 轮中,攻击者在第 1, . . ., k − 1 轮中观察了所有先前的样本后,选择 pk ∈ P 和 qk ∈ Q,目的是混淆假设检验。我们证明,即使在这种情况下,也可以通过仅取决于 P 和 Q 的简单最大似然检验来实现最佳指数错误率。然后我们表明对抗模型可用于使用受限测量对量子态进行假设检验。例如,它可以用于研究仅使用可通过局部操作和经典通信 (LOCC) 实现的测量来区分纠缠态与所有可分离态集合的问题。基本思想是,在我们的设置中,可以通过自适应经典对手模拟纠缠的有害影响。我们在这种情况下证明了一个量子斯坦引理:在许多情况下,最佳假设检验率等于两个状态之间适当的量子相对熵概念。特别是,我们的论证为李和温特最近加强冯诺依曼熵的强亚可加性提供了另一种证明。

对抗性假设检验和限制测量的量子 Stein 引理

对抗性假设检验和限制测量的量子 Stein 引理PDF文件第1页

对抗性假设检验和限制测量的量子 Stein 引理PDF文件第2页

对抗性假设检验和限制测量的量子 Stein 引理PDF文件第3页

对抗性假设检验和限制测量的量子 Stein 引理PDF文件第4页

对抗性假设检验和限制测量的量子 Stein 引理PDF文件第5页

相关文件推荐

量子限制
2020 年
¥1.0