新方法首先应用于计算机视觉领域——该团队成功提高了 3D 物体检测和识别的准确性。 AIRI 研究所和国立高等经济学院的科学家展示并通过实验证实了使用在高质量数据集上训练的小型生成模型进一步训练大型 AI 模型和解决 3D 检测问题的优势。该方法将适用于无人驾驶飞行器的开发,并将在未来更准确地确定物体的运动速度和方向、表面特性以及飞行器在空间中的定位。该文章已被最大的国际计算机视觉会议CVPR 2024接受。3D物体识别是预测和规划无人驾驶汽车路径的关键任务之一。为了解决这个问题,系统使用一组不同的读数来确定物体所在的区域(平行六面体)。然而,激光雷达等传感器并不总是提供有关深度的完整信息,因此也不能提供有关物体的 3D 位置的完整信息。在道路上,一个元素可能会被其他结构复杂的物体(例如一棵树或一辆行驶的汽车)完全或部分遮挡,这将对激光雷达的效率产生负面影响。俄罗斯科学家提出的方法证明,尽管激光雷达数据存在噪声且物体相互重叠,但可以更准确地确定物体的三维位置。在为期一年的研究过程中,该团队利用汽车行驶在城市街道上时获取的点云记录训练了一个小型生成模型。数据点是在三种情况下收集的:当物体完全在视野中时、当只有部分可见时、以及当物体被遗忘时。然后,使用点云配准 (PCR) 方法,即使基于一个小的可见片段,点云也可以与特定汽车和其他物体相关联。然后使用这个小而准确的模型(教师模型)来训练在具有许多复杂参数的噪声点云上运行的更大的神经网络(学生模型)。结果,神经网络显著提高了识别真实物体的准确性——该技术开始正确预测未来才能看到的周围物体的形状。 “我们开始与 OpenAI 的研究人员并行开展该项目,他们决定采用类似的方法处理文本,而我们的团队则专注于计算机视觉。有趣的是,这个想法本身和得到的结果对两个团队来说都证明了其价值,他们并没有直接互动就得出了类似的结论。我们看到了扩展计算机视觉方法的机会:例如,通过增加任务数量和每个模型的复杂性。是的,你可以教
主要关键词