摘要:计算机辅助合成规划 (CASP) 旨在帮助化学家利用他们的实验、直觉和知识进行逆合成分析。机器学习 (ML) 技术(包括深度神经网络)的最新突破显著改善了无需人工干预的数据驱动合成路线设计。然而,通过 ML 学习化学知识进行实际合成规划尚未充分实现,仍然是一个具有挑战性的问题。在本研究中,我们开发了一个集成了各种逆合成知识的数据驱动 CASP 应用程序“ReTReK”,该应用程序将知识作为可调参数引入有希望的搜索方向的评估中。实验结果表明,ReTReK 成功地根据指定的逆合成知识搜索了合成路线,表明使用该知识搜索的合成路线比没有该知识的合成路线更受欢迎。将逆合成知识作为可调参数集成到数据驱动的 CASP 应用程序中的概念有望提高现有数据驱动的 CASP 应用程序和正在开发中的应用程序的性能。 ■ 引言自20世纪60年代以来,各种计算机辅助合成规划(CASP)应用程序被开发出来以模拟化学家的思维并帮助有机合成化学家开展工作。1 − 9 CASP 应用程序在合成的可定义部分(例如化学结构的特征和逆合成树的大小)中发挥了重要作用,而合成的不可定义部分(例如化学家的直觉)和在逆合成分析中贡献创造力的机会则留给了化学家。1作为化学家的直觉,Corey 形式化了逆合成的概念(逆合成知识)和主要类型的策略(例如基于变换和拓扑的策略)。他指出,通过同时使用尽可能多的不同的独立策略可以最有效地进行逆合成分析。 10 对于最优策略的选择,化学家的化学知识和他们的实验至关重要;特定合成问题的最优策略取决于所涉及的分子、人员和情况(例如,先导化合物的优化和候选药物的大规模合成)。11
主要关键词