模型和算法 模型是流程的简化表示,重点关注建模者感兴趣的关键特征。例如,银行可能希望预测借款人拖欠贷款的可能性,或者保险公司可能希望预测保单持有人提出索赔的可能性。这可以通过将一段时间内对结果(借款人违约或不违约,或保单持有人索赔或不索赔)的观察与被认为影响结果的变量联系起来来实现。例如,贷款违约可能被认为取决于借款人的收入、就业和年龄等变量。模型参数(例如模型变量的权重)决定了每个变量如何影响建模结果。可以使用各种算法来估计模型参数的值,这些算法基于模型输入的“训练”数据集(例如,贷款违约/不违约的数据和影响违约的变量)将预测误差降至最低。算法对结果(因变量,例如贷款违约或保险索赔)与解释变量之间关系进行建模的能力因用于模型估计的算法而异。例如,线性回归假设解释变量与结果之间存在线性关系。或者,人工神经网络可以对模型变量和结果之间的几乎任何函数关系进行建模,包括复杂和非线性关系。在最后一步中,可以将估计的模型应用于解释变量的新数据以预测结果。
主要关键词