最近,由于它能够从大量未标记的数据中学习,因此蒙版的图像建模(MIM)引起了很大的关注,并且已被证明对涉及自然IM的各种视觉任务有效。同时,由于数量的未标记图像以及质量标签的费用和困难,预计自我监督的学习3D医学图像的潜力预计将是巨大的。但是,MIM对医学图像的适用性仍然不确定。在本文中,我们证明了掩盖的进度建模方法除自然图像外,还可以推进3D医学图像分析。我们研究掩盖图像建模策略如何从3D医疗图像段的角度利用绩效,作为一项代表性的下游任务:i)与天真的对比度学习相比,掩盖的图像建模ap-par-ap-par-ap-par casge casge casge casgence convelence contergencience convergence contressed of被监督的火车的融合甚至更高(1.40×)得分(1.40×),并最终会产生较高的股票; ii)预测具有较高遮盖比和相对较小的斑块大小的原始体素值是用于医学图像的非琐碎的自我监督借口任务; iii)重建重建的轻量级解码器或投影头对3D医疗图像的掩盖图像模型非常可靠,该图像可以加快训练并降低成本; iv)最后,我们还研究了应用不同图像分辨率和标记的数据比率的不同实际情况下的MIM方法的有效性。匿名代码可在https://github.com/zekaichen/mim-med3d上找到。
主要关键词