Loading...
机构名称:
¥ 2.0

目的是为机器学习(ML)团队提供明确且动机的指导,该团队基于我们在经验湍流建模方面的经验。在ML外部进行建模也需要指导。mL尚未成功进行湍流建模,许多论文由于数学或物理学错误或严重过度拟合而产生了无法使用的建议。我们认为,“湍流文化”(TC)需要数年的时间来学习,而且很难传达,特别是考虑到现代缺乏仔细学习的时间;在湍流研究和建模和广泛阅读事业之后,不言而喻的重要事实很容易错过。此外,其中许多不是绝对事实,这是我们对湍流的理解以及模型与第一原理的弱连接的差距的结果。一些数学事实是严格的,但是物理方面通常不是。湍流模型令人惊讶地任意。专家之间的分歧使新进入者感到困惑。此外,通过微分方程的非平凡分析特性确定了模型的几个关键特性,这使它们无法触及纯粹数据驱动的ML型方法。最好的例子是模型在湍流区域(ETR)边缘的关键行为。我们希望在此处投放的知识可能会分为“任务”和“要求”,每个知识都结合了物理和数学。呈现了“硬”和“软”约束的明确列表。我们的重点是创建有效的产品,以增强CFD的能力,而不是出版物。首先携带了如何使用DNS数据(可能与ML结盟)的具体示例,并说明了所需的大量决策。

机器学习的老式框架

机器学习的老式框架PDF文件第1页

机器学习的老式框架PDF文件第2页

机器学习的老式框架PDF文件第3页

机器学习的老式框架PDF文件第4页

机器学习的老式框架PDF文件第5页