在脑部计算机界面(BCI)领域的研究主要是在受控的实验室环境中进行的。要将BCIS转移到现实世界和日常生活情况下,将研究从这些受控环境中带出来并进入更现实的情景至关重要。最近,在教室,汽车或逼真的拖船模拟器中记录了各种研究(Blankertz等,2010; Brouwer等,2017; Ko等,2017; Miklody等,2017)。移动BCIS甚至允许参与者在录制期间自由移动(Lotte等,2009; Castermans等,2011; De Vos等,2014; Wriessnegger等,2017;VonLühmann等,2017,2019)。其他研究是通过瘫痪,锁定或完全锁定的使用者或参与者从中风中恢复的(Neuper等,2003; Ang等,2011; Leeb等,2013;Höhne等,2014; Hwang等,2017; Han等,2019; Han。,2019; Lugo等。但是,到目前为止,还没有进行BCI研究,该研究系统地研究了分心。,我们在五种类型的干扰下记录了基于运动图像的BCI研究(n = 16),该研究模仿了极光外环境,并且没有添加分心的控制任务。次要任务包括观看一段闪烁的视频,搜索特定号码的房间,听新闻,闭上眼睛和氛围刺激。我们希望通过以多种干扰条件发布此BCI数据集来进一步做出贡献。本报告提供了研究的设计和实验设置的摘要。(2016)。已经发布了许多BCI数据集,例如,在BNCI Horizon 2020 Initiative 1,4 BCI竞赛对研究社区的影响很大(Sajda等,2003; Blankertz等,2004,2006; Blankertz et al。 2018)。我们还在所有次级任务的标准分类管道和功率谱上显示了与事件相关的同步和对异步的结果组级别的结果。除了数据集2外,用于分析的代码也可以公开可用3,并且可以在Brandl等人中找到更高级的分析。
主要关键词