Loading...
机构名称:
¥ 2.0

Large-scale clinical interpretation of genetic variants using evolutionary data and deep learning Jonathan Frazer 1, * , Pascal Notin 2, * , Mafalda Dias 1, * , Aidan Gomez 2 , Kelly Brock 1 , Yarin Gal 2, ** , Debora S. Marks 1,3, ** Affiliations: 1 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.2 OATML集团,牛津大学计算机科学系,牛津大学,OX1 3QD,英国。3哈佛大学和麻省理工学院,美国马萨诸塞州剑桥市02142,美国。*这些作者为这项工作做出了同样的贡献。**相应的作者:debbie@hms.harvard.edu,yarin.gal@cs.ox.ac.uk摘要摘要量化与人类疾病相关基因中蛋白质变异的致病性会对临床决策产生深远的影响,但这些变体的巨大功能(超过98%)仍然具有这些变异的影响。原则上,计算方法可以支持遗传变异的大规模解释。但是,先前的方法4-7依赖于可用临床标签上的训练机学习模型。由于这些标签稀疏,有偏见且质量可变,因此所产生的模型被认为不足以可靠8。相比之下,我们的方法利用了深层生成模型来预测蛋白质变体的临床意义而不依赖标签。我们在生物体中观察到的蛋白质序列的自然分布是数十亿进化实验的结果9,10。通过对该分布进行建模,我们隐含地捕获了维持适应性的蛋白质序列的约束。我们的模型前夕(变异效应的进化模型)不仅要优于依赖标记数据的计算方法,而且在PAR上执行的(如果不优于)高通量分析,这些测定越来越多地用作变体分类11-23的强有力证据。在对临床标签进行彻底验证后,我们预测了1,0811个疾病基因的1100万种变体的致病性,并为72K变体分配了未知意义的72K变体8。我们的工作表明,进化信息的模型可以为变异解释提供有力的独立证据来源,并且该方法将在研究和临床环境中广泛有用。

使用进化数据和深度学习对遗传变异的大规模临床解释

使用进化数据和深度学习对遗传变异的大规模临床解释PDF文件第1页

使用进化数据和深度学习对遗传变异的大规模临床解释PDF文件第2页

使用进化数据和深度学习对遗传变异的大规模临床解释PDF文件第3页

使用进化数据和深度学习对遗传变异的大规模临床解释PDF文件第4页

使用进化数据和深度学习对遗传变异的大规模临床解释PDF文件第5页

相关文件推荐

2021 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2023 年
¥1.0