在此,使用离散小波变换(DWT)转换(DWT)转换(DWT)转换和灰度共同发生矩阵(GLCM)的特征提取和特征提取了使用磁性磁共振(MRI)Imagoma(MRI)GLI(MRI)GLI(MRI)(MRI)(MRI)(MRI)图像(LBP),使用了脑肿瘤分类方法(SVM)算法(DWT)变换(DWT)转换(DWT)转换和特征提取(LBP)。 (HGG)组。SVM算法用作分类方法已被广泛用于提高分类主题的研究。通过2个数据类之间的超平面形成,可以说SVM算法是一种可靠的方法,但不需要复杂的计算。DWT转换旨在提供MRI图像中更清晰的特征细节,因此当应用特征提取算法时,预计提取的特征在良性肿瘤MRI图像和恶性肿瘤MRI图像之间会有所不同。使用高低(HL)子带中的1级DWT中的DWT产生的最高特异性,灵敏度和准确性比使用LGG MRI图像中的HL或低高(LH)子频段使用3级水平。与另一项研究相比,我们提出的方法在准确性方面稍好一些,以实现98.6486%的精度对脑肿瘤图像进行分类。