摘要:情感分析是人类计算机情感互动的关键技术,并逐渐成为人工智能领域的研究热点。基于脑电图的情绪分析的关键问题是特征提取和分类设计。现有的情绪分析方法主要使用机器学习,并依靠手动提取的功能。作为端到端方法,深度学习可以自动提取脑电图并对其进行分类。但是,基于脑电图的大多数深度学习模型仍然需要手动筛选和数据预处理,准确性和便利性不够高。因此,本文提出了一个CNN-BI-LSTM注意模型,以自动提取特征并根据EEG信号对情绪进行分类。原始的脑电图数据用作输入,CNN和BI-LSTM网络用于特征提取和融合,然后通过注意机构层平衡了电极通道的重量。最后,EEG信号分类为各种情绪。在种子数据集上进行了基于脑电图的情绪分类实验,以评估所提出模型的性能。实验结果表明,本文提出的方法可以有效地对脑电图进行分类。该方法在两个独特的分类任务上进行了评估,其中一项具有三个和四个目标类别。该方法的平均十倍交叉验证分类精度分别为99.55%和99.79%,对应于三个和四个分类任务,这比其他方法要好得多。可以得出结论,我们的方法优于情感识别中现有的方法,这些方法可以广泛用于许多领域,包括现代神经科学,心理学,神经工程和计算机科学。
主要关键词