我们证明玻色子和费米子高斯态(也称为“压缩相干态”)可用其线性复结构 J 来唯一表征,该结构是经典相空间上的线性映射。这扩展了基于协方差矩阵的传统高斯方法,并提供了一个同时处理玻色子和费米子的统一框架。纯高斯态可以用兼容凯勒结构的三重 ( G , Ω , J ) 来识别,由正定度量 G、辛形式 Ω 和线性复结构 J 组成,其中 J 2 = − 1 。混合高斯态也可以用这样的三重结构来识别,但 J 2 ̸ = − 1 。我们应用这些方法来展示如何将涉及高斯态的计算简化为这些对象的代数运算,从而得到许多已知和一些未知的身份。我们将这些方法应用于研究(A)纠缠和复杂性、(B)稳定系统的动力学、(C)驱动系统的动力学。由此,我们编制了一份全面的数学结构和公式列表,以并排比较玻色子和费米子高斯态。