绝热、可定制的比强度、出色的冲击能量吸收和缓冲性能,而且结构重量很轻。通过调整基础材料特性和细胞结构,可以定制这些结构的宏观(体积)行为,这使得细胞固体广泛应用于汽车、航空航天、体育、生物力学和包装行业。已确定细胞固体的密度、承载、能量吸收、声学和热特性在很大程度上取决于其细胞结构的几何形状、连通性和结构。细胞固体中特性结构性能的相互依赖性导致开发出各种类型的随机或无序(泡沫)和周期性或有序(晶格)结构,这些结构具有可定制和特定于应用的特性。然而从实际角度来看,在设计和开发多孔固体时,特别是对于结构的承载能力至关重要的用途,一个常见的缺点是在比强度和能量吸收性能之间进行权衡。 [1] 研究表明,增加多孔固体的细胞壁厚度通常会导致更高的强度和更低的能量吸收能力。相反,可以通过减少细胞壁厚度(以强度和刚度为代价)来提高比能量吸收(以重量为标准的吸收应变能量)。在解决多孔固体的强度能量吸收二分法方面已经取得了重大进展。例如,膨胀结构的开发为一种新型多孔结构打开了大门,这种结构在抗变形和压痕性能的改善、增强的承载和断裂性能以及增强的冲击能量缓解性能方面优于传统结构。 [2 – 4] 事实证明,膨胀结构前景广阔,尤其是在体育应用中,可用作具有可调性能的轻质防护垫。[5] 然而,尽管它们有可能为提高强度和缓冲性能提供途径,但仍需要克服一些困难,并呼吁在这一领域进一步发展。例如,膨胀结构(尤其是膨胀泡沫)的加工和制造并不适用于所有聚合物系统,需要精确且通常成本高昂的加工技术。[2,6]
主要关键词