Loading...
机构名称:
¥ 1.0

使用卷积神经网络对阿尔茨海默病进行诊断和分类 1 算法 2 3 4 Mosleh Hmoud Al-Adhaileh 5 沙特阿拉伯费萨尔国王大学电子学习和远程教育院长,邮政信箱 4000 Al-Ahsa,6 沙特阿拉伯 7 * 通讯:madaileh@kfu.edu.sa 8 9 10 摘要 11 12 阿尔茨海默病 (AD) 是一种高风险和萎缩性神经疾病,它会缓慢而逐渐地破坏脑细胞(即神经元)。作为最常见的智力低下类型,AD 影响了 60-65% 的智力低下患者 14 ,对中老年人的健康构成重大威胁。为了在早期对 15 AD 进行分类,已经开发了分类系统和计算机辅助诊断技术 16 。以前,机器学习方法通​​过从神经图像中提取特征来开发诊断系统。目前,深度学习方法已用于许多实时医学成像应用。在本研究中,两种深度神经网络技术 AlexNet 和 Restnet50 被用于 AD 的分类和识别。本研究中用于评估和测试所提模型的数据包括从 Kaggle 网站收集的脑磁共振成像 (MRI) 图像。卷积神经网络 (CNN) 算法被应用于有效地对 AD 进行分类。使用 AlexNet 和 Restnet50 传输学习模型对 CNN 进行预训练。该实验的结果表明,所提出的方法在检测精度方面优于现有系统。AlexNet 模型根据脑 MRI 数据集的五个评估指标 (准确度、F1 分数、精确度、灵敏度和特异性) 取得了出色的性能。 AlexNet 的准确率为 94.53%,特异性为 98.21%,F1 得分为 27 94.12%,灵敏度为 100%,优于 Restnet50。所提出的方法有助于改进医学研究中 AD 的 CAD 28 方法。29 30 31 关键词:计算机辅助、卷积神经网络、人工智能、阿尔茨海默病。32 33 34 1. 简介 35

通过...对阿尔茨海默病进行诊断和分类

通过...对阿尔茨海默病进行诊断和分类PDF文件第1页

通过...对阿尔茨海默病进行诊断和分类PDF文件第2页

通过...对阿尔茨海默病进行诊断和分类PDF文件第3页

通过...对阿尔茨海默病进行诊断和分类PDF文件第4页

通过...对阿尔茨海默病进行诊断和分类PDF文件第5页

相关文件推荐

2025 年
¥1.0
2020 年
¥1.0
2022 年
¥1.0
2019 年
¥16.0