神经技术将神经科学与工程学相结合,创造出研究、修复和增强大脑功能的工具。传统上,研究人员使用脑机接口 (BCI) 等神经技术作为辅助设备,例如让闭经患者进行交流。在过去的几十年里,脑电图 (EEG) 和功能性近红外光谱 (fNIRS) 等非侵入性脑成像设备变得更加便携和便宜,为神经技术的创新应用铺平了道路(Ayaz 和 Dehais,2018 年)。神经人体工程学和神经工程学的最新趋势是使用神经技术来增强人类的各种能力,包括(但不限于)沟通、情感、感知、记忆、注意力、参与度、情境意识、解决问题和决策(Cinel 等人,2019 年;Kosmyna 和 Maes,2019 年)。本研究主题汇集了 12 篇关于用于人类增强的非侵入式 BCI 开发的最新进展的文章,特别强调了大脑刺激和神经解码。为了介绍人类增强这一主题,Dehais 及其同事提出了一个二维框架,该框架结合了唤醒和任务参与度来表征人类增强中通常使用的不同变量,例如心理工作量和人类表现(Dehais et al., 2020 )。具体而言,任务参与度低会导致思维游离或努力放弃,具体取决于唤醒水平,而唤醒度过高则可能导致固执己见或注意力盲视和耳聋。因此,可以使用神经技术将大脑引导到唤醒-参与空间中的最佳位置,以最大限度地提高表现,该位置的特点是中等水平的唤醒和高任务参与度,这可以通过使用大脑刺激或神经反馈来实现。本研究主题中的几项研究调查了使用非侵入性脑刺激来增强人类表现:这是神经技术领域的一个非常热门的话题(Kadosh,2014;Santarnecchi 等人,2015)。Pilly 及其同事提出了一种基于虚拟现实的新范式,使用经颅电刺激(tES)来扩展长期元记忆(Pilly 等人)。通过在参与者睡眠时施加周期性的短脉冲,他们将 48 小时内一次性观看自然情节的记忆回忆提高了 10-20%。Patel 及其同事进行了一项系统的荟萃分析,以审查使用经颅直流电刺激(tDCS)来改善上肢运动表现(Patel 等人)。脑刺激可显著减少反应时间和任务执行时间,并增加肘部屈曲任务的力量和准确性。王及其同事报告称,将大脑刺激与体育训练相结合可以增加运动诱发电位 (MEP) 幅度和肌肉强度,并降低动态姿势
主要关键词