Loading...
机构名称:
¥ 1.0

大型、多站点、异构脑成像数据集越来越需要用于训练、验证和测试基于深度学习 (DL) 的高级自动化工具,包括基于结构磁共振 (MR) 图像的诊断和治疗监测方法。在将多个较小的数据集组合成较大的数据集时,了解聚合数据集中不同采集和处理协议之间的潜在差异 (称为“批次效应”) 至关重要。训练数据集中存在差异很重要,因为它更接近地反映了真实的潜在数据分布,因此可以增强工具的整体通用性。然而,必须仔细评估批次效应的影响,以避免不良影响,例如可能降低性能指标。批次效应可能来自许多方面,包括采集设备、成像技术和参数以及应用的处理方法的差异。在开发工具时,必须考虑它们的影响,包括有益的和不利的,以确保它们的输出与提出的临床或研究问题(即实际的疾病相关或病理变化)相关,而不仅仅是由于聚合数据集中底层批次效应的特殊性。我们回顾了深度学习在结构性脑 MR 成像中的应用,它聚合了来自神经成像数据集的图像,这些数据集通常是在多个站点获取的。我们检查了包含健康对照参与者和患者的数据集,这些数据集是使用不同的采集协议获取的。首先,我们讨论了数据访问问题,并列举了一些常用的公开脑数据集的主要特征。然后,我们通过探索两大类方法回顾了纠正批次效应的方法:数据协调,使用数据标准化、质量控制协议或其他类似算法和程序来明确理解和最小化不必要的批次效应;领域自适应,开发深度学习工具,通过使用方法隐式处理批次效应以获得可靠和稳健的结果。在这篇叙述性评论中,我们强调了这两类 DL 方法的优缺点,并描述了未来研究中需要解决的关键挑战。

大型和多部位结构性脑 MR 成像数据集中的深度学习

大型和多部位结构性脑 MR 成像数据集中的深度学习PDF文件第1页

大型和多部位结构性脑 MR 成像数据集中的深度学习PDF文件第2页

大型和多部位结构性脑 MR 成像数据集中的深度学习PDF文件第3页

大型和多部位结构性脑 MR 成像数据集中的深度学习PDF文件第4页

大型和多部位结构性脑 MR 成像数据集中的深度学习PDF文件第5页

相关文件推荐

2021 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2021 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2021 年
¥4.0
2025 年
¥18.0