摘要 — 基于运动想象的脑机接口 (MI-BCI) 需要校准程序来为新用户调整系统。此过程非常耗时,并且会阻止新用户立即使用系统。由于 MI 信号的主体相关特性,开发独立于主体的 MI-BCI 系统以减少校准阶段仍然具有挑战性。已经开发了许多基于机器学习和深度学习的算法来从 MI 信号中提取高级特征,以提高 BCI 系统对主体的泛化能力。然而,这些方法基于监督学习并提取可用于区分各种 MI 信号的特征。因此,这些方法无法在 MI 信号中找到共同的潜在模式,并且其泛化水平有限。本文提出了一种基于监督自动编码器 (SAE) 的独立于主体的 MI-BCI 来绕过校准阶段。建议的框架在 BCI 竞赛 IV 中的数据集 2a 上得到了验证。模拟结果表明,在九个受试者中的八个中,我们的 SISAE 模型在平均 Kappa 值方面优于传统的和广泛使用的 BCI 算法、常见空间和滤波器组常见空间模式。
主要关键词