在整个生命历史中,进化依赖于随机突变和自然选择的基本过程,从而产生了具有显著功能的多种生物分子。定向进化领域长期以来一直试图利用进化的力量来设计新的生物分子功能 1、2。然而,典型的细菌、酵母或人类细胞中 DNA 复制的突变率为每个碱基 10 −10 –10 −9 个替换 3 ,或者说,平均长度(~1 kb)的基因内的突变大约每 100 万到 1000 万次细胞分裂就会发生一次。在如此低的突变率下,即使是简单的单个突变也很难采样到,而这些突变可以使目标基因(GOI)及其编码的 RNA 或蛋白质朝着所需功能的方向发展。定向进化传统上转向体外多样性生成,其中可以使用易错 PCR 或随机寡核苷酸池对 GOI 施加高突变率 2 。然后将得到的GOI变体文库转化为细胞,在细胞中以RNA和蛋白质的形式表达,并进行选择或筛选。富集的GOI变体作为下一轮体外多样化、转化和选择或筛选的模板,推进进化周期(图1a)。尽管定向进化彻底改变了生物分子工程——特别是荧光蛋白、酶和抗体工程2、4——但它对手动分阶段进化步骤的传统依赖限制了进化搜索的深度和规模。由于需要体外GOI多样化,经典的定向进化放弃了
主要关键词