简介。近年来,根据纠缠模式对量子态进行分类和研究的重要性已被揭示。一类重要的量子态是那些可以通过最小割方法计算纠缠熵的量子态。该方法假设状态可以用辅助“块”结构表示,通常是张量网络或——在全息对偶 [1] 中——块几何。最小割方法将区域 X 的纠缠熵等同于块割的权重,它将 X 与 ¯ X (X 的补集)分开。该方法适用于大键维度的所有随机张量网络状态 [2],并且——在全息对偶中——对 Ryu-Takayanagi 提案 [3 – 6] 中的主导面积项有效。本文关注最小割方法所暗示的纠缠熵约束。由于应用于全息对偶,此类约束通常被称为“全息熵不等式”。 “在假设的熵分配给区域的向量空间(熵空间)中,每个全息不等式的饱和点都是一个超平面。因此,所有全息不等式允许的熵集称为“全息熵锥” [7] 。进一步遵循全息命名法,我们将割线权重称为“区域”。最简单的全息不等式,称为互信息一夫一妻制 [8] ,是