Loading...
机构名称:
¥ 1.0

脑信号是理解人脑生理活动和疾病的重要定量数据。同时,快速发展的深度学习方法为更好地建模脑信号提供了广泛的机会,近年来吸引了大量研究投入。现有研究大多关注监督学习方法,但该方法需要高成本的临床标签。此外,侵入性(如SEEG)和非侵入性(如EEG)方法测得的脑信号的临床模式差异巨大,导致缺乏统一的方法。为了处理上述问题,本文提出研究脑信号的自监督学习(SSL)框架,可应用于预训练SEEG或EEG数据。直观地看,脑信号是由神经元放电产生的,会在人脑不同的连接结构之间传输。受此启发,我们提出MBrain来学习不同通道(即电极触点,对应不同的脑区)之间隐含的空间和时间相关性,作为统一建模不同类型脑信号的基石。具体来说,我们用一个图结构来表示空间相关性,该图结构是基于提出的多通道 CPC 构建的。我们从理论上证明优化多通道 CPC 的目标可以得到更好的预测表示,并在此基础上应用瞬时时间移位预测任务。然后,我们通过设计延迟时间移位预测任务来捕捉时间相关性。最后,提出替代判别学习任务来保留每个通道的特征。在 EEG 和 SEEG 大规模真实数据集上进行的大量癫痫检测实验表明,我们的模型优于几种最先进的时间序列 SSL 和无监督模型,并且有能力部署到临床实践中。

MBrain:一种用于脑信号的多通道自监督学习框架

MBrain:一种用于脑信号的多通道自监督学习框架PDF文件第1页

MBrain:一种用于脑信号的多通道自监督学习框架PDF文件第2页

MBrain:一种用于脑信号的多通道自监督学习框架PDF文件第3页

MBrain:一种用于脑信号的多通道自监督学习框架PDF文件第4页

MBrain:一种用于脑信号的多通道自监督学习框架PDF文件第5页

相关文件推荐

2025 年
¥18.0
2024 年
¥1.0