机器学习模型中用于健康保险中欺诈检测的预测准确性是保护财务损失和维持保险系统完整性的关键边界。在美国和英国等发达经济体中,由于复杂的机器学习算法和数据分析的整合,欺诈检测的预测准确性取得了重大进步。例如,Johnson(2018)的一项研究分析了美国的欺诈检测系统,发现近年来精确率从80%提高到95%以上。 这种改进意味着这些系统可以增强的能力准确识别欺诈活动,同时最大程度地减少误报。 同样,在英国,金融行为管理局(FCA)的报告表明,召回率从70%增加到85%,展示了该系统捕获更高比例实际欺诈案件的能力。 这些趋势强调了金融机构和监管机构的持续努力和投资,以增强发达经济体的欺诈检测机制。例如,Johnson(2018)的一项研究分析了美国的欺诈检测系统,发现近年来精确率从80%提高到95%以上。这种改进意味着这些系统可以增强的能力准确识别欺诈活动,同时最大程度地减少误报。同样,在英国,金融行为管理局(FCA)的报告表明,召回率从70%增加到85%,展示了该系统捕获更高比例实际欺诈案件的能力。这些趋势强调了金融机构和监管机构的持续努力和投资,以增强发达经济体的欺诈检测机制。
主要关键词