Loading...
机构名称:
¥ 1.0

与化学物质不同,可以根据定义明确的分子结构和稳定的特性来识别该化学物质(例如,cas数,微笑),微型和纳米塑料颗粒(MNP)缺乏这种直接的分类。每个MNP都有自己的特征组合,包括聚合物组成,粒子尺寸(长度和宽度)以及形状以及形状以及物理化学特性,例如表面电荷,表面化学和塑料相关化学物质。此外,这些特征可能会随着时间而变化,特别是由于MNP暴露于自然环境时的退化过程。为了实现MNP的可靠危害和风险评估,有必要预测MNP的毒性,其性状组合尚未直接在实验室中进行测试。类似于将化学物质的分子结构与有毒结果联系起来的定量结构 - 活性关系(QSAR)模型,需要模型将MNPS性状与其毒性联系起来。最近收集的微塑料资源管理器(TOMEX)2.0数据库的毒性由290个发表的有关MNP对水生物种的效应的研究点的13,412个数据库组成,这为处理这项任务提供了独特的机会。使用TOMEX 2.0数据,我们对任务进行了机器学习模型,以预测未经测试的MNP的毒性(存在/不存在效果方向,有效浓度)。我们还比较了根据分配的质量分数根据研究质量过滤数据集时的预测是否发生变化。我们比较了两种机器学习算法(增强回归树和深神经网络)的预测性能,并使用可解释的AI(平均边缘效应)的方法来洞悉毒性结果与MNP特征,实验参数和物种特质之间的关系。最后,我们讨论了如何使用此类模型来预测MNP的环境相关混合物的毒性,以及它们如何在将来有助于毒性较小,更环保塑料材料的发展。

通过机器学习模型预测微塑料颗粒的毒性

通过机器学习模型预测微塑料颗粒的毒性PDF文件第1页

通过机器学习模型预测微塑料颗粒的毒性PDF文件第2页

相关文件推荐