摘要基于密度功能理论(DFT)筛选新材料特性的高计算需求仍然是对未来几十年过渡到碳中性环境必不可少的清洁和可再生能源技术的强大限制。机器学习以其天生的能力来处理大量数据和高维统计分析。在本文中,使用密度功能理论从高通量计算获得的现有数据集进行了监督的机器学习模型,用于预测无机化合物的Seebeck系数,电导率和功率因数。分析表明,热电特性对有效质量具有很强的依赖性,我们还提出了一个机器学习模型,以预测高表现的热电材料,该模型达到了95%的效率。分析的数据和开发的模型可以通过提供更快,更准确的热电性能预测,从而有助于发现高效的热电材料,从而显着促进创新。
主要关键词