根据中央Java统计局的数据,社区发展和增长有关2021年中部爪哇省车辆数量的数据是20 320 743。社会增长的增长导致了车辆密度,这在城市地区是一个严重的问题。这项研究使用Yolov8算法开发了一种拥塞检测系统,以分析CCTV素材的交通密度。自动检测交通拥堵是城市运输管理中的一个关键挑战。Yolov8是一种快速准确的对象检测算法,用于识别车辆并在高速公路各个区域计数数量。然后处理此信息以评估道路拥堵条件,目的是检测拥塞。在两个道路方案和交通状况上测试了获得的数据,以评估系统的性能。结果表明,在训练测试中,Yolov8的准确性在96%时显示出很高,但是在几种不同的样本测试中,检测准确率在所有测试的框架样品中均显示59.2%。使用Yolov8的使用可以通过有效的计算资源实时检测,从而使其成为大规模部署的潜在解决方案。本研究表明,将高级对象检测算法(例如Yolov8)与CCTV数据合并可以为大城市的交通管理提供有效的解决方案。预计该系统将改善对拥塞的反应,帮助控制交通,并减少城市地区拥塞的负面影响。
主要关键词