过去十年见证了机器学习(ML)方法的越来越多,包括物理科学在内[1]。The rise of deep learning (DL) [ 2 ] in early 2010 and the remarkable potential of deep neural networks (DNNs) in learning highly predictive models, mainly powered by convolutional [ 3 ] and recurrent [ 4 ] neural networks, emphasized with the ImageNet challenge [ 5 ] and developments in areas such as reinforcement learning [ 6 ], have boosted the application of artificial intelligence (AI) in nearly all domains and thus reshaped the AI的未来。DL革命之后是成功的变压器体系结构[7],其中“注意”的概念被添加到标准NN的体系结构中,以捕获数据特征之间的长期相关性。变形金刚是大语言模型(LLM)的基础,可以通过在大型数据集上预处理,从而在没有特定领域的知识的情况下学习上下文,从而解开了另一个AI的新时代。尽管AI的发展急剧发展,但大多数基于ML的物理科学应用程序[1]着重于学习非线性数值模型以完成特定任务(例如,数据分析,模拟等)实现新发现。这里出现了物理学家对应用ML的期望以及如何推进物理学的期望。只是一组革命性的数学工具,其性能克服了经典方法,从而取代了它们(例如,DL表现出色的促进决策树,用于针对事件选择任务,该任务针对粒子物理学的标准模型以外的理论[8]),或者是数据驱动的科学发现的能力[8])?
主要关键词