深度学习(DL)是人工智能的子场(AI),涉及算法和模型的开发,这些算法和模型模拟了人类思想的解决问题能力。复杂的AI技术近年来在兽医领域引起了极大的关注。本综述提供了专门用于利用DL用于兽医诊断目的的研究的全面概述。我们的系统审查方法遵循PRISMA指南,重点关注DL和兽医医学的交集,并确定了422篇相关研究文章。在出口标题和摘要以进行筛选之后,我们将选择范围缩小到39个主要研究文章,直接将DL应用于动物疾病检测或管理中,不包括非主要研究,评论和无关的AI研究。目前研究的主要发现突出了2013年至2024年在各个诊断区域中DL模型的利用的增加,包括X射线照相术(占研究的33%),细胞学(33%),健康记录分析(8%),MRI(8%),环境数据分析(5%),照片/视频图像/视频图像(5%)和Ulteras(5%),5%(5%)。在过去的十年中,射线照相成像已成为最有影响力的。与专业兽医基准相比,使用DL模型对原发性胸腔病变和心脏疾病的原发性胸腔病变和心脏疾病的分类取得了显着成功。此外,该技术已被证明擅长于识别,计数和分类显微镜幻灯片图像中的细胞类型,从而在不同的兽医诊断方式上证明了其多功能性。深度学习在兽医诊断方面表现出希望,但仍有一些挑战。这些挑战的范围包括对大型和多样化的数据集的需求,可解释性问题的潜力以及在整个模型开发中与专家进行咨询以确保有效性的重要性。对这些考虑和实施DL在兽医医学中的设计和实施的全面理解对于推动该领域的未来研究和发展工作至关重要。此外,讨论了DL对兽医诊断的潜在影响,以探索兽医医学中DL应用进一步完善和扩展的途径,最终导致了增加的护理标准,并改善了动物的健康状况,随着这项技术的不断发展。
主要关键词