Loading...
机构名称:
¥ 1.0

摘要: - 夜间驾驶带来了可见性和照明降低带来的相当困难,从而提高了不幸的可能性。热成像技术通过捕获由物体发出的热辐射(独立于环境照明条件)来提供有希望的解决方案。在本文中,我们建议一种独特的方法,用于在涉及使用深度学习技术的情况下获得的热图像的语义分割。我们的方法的标题为“用于夜间场景的多模式语义分割算法”,利用卷积神经网络(CNNS)将热图像中的像素准确分类为有意义的类别,例如道路,车辆,车辆,行人和障碍物。我们采用编码器架构,转移学习和量身定制的数据增强策略,以提高通用性以及分割能力的准确性。使用公开访问数据集进行的测试,包括KAIST数据集,证明了我们方法在准确分割热图像中的有效性。性能指标,例如像素级准确度(99%),平均相交(MIOU)(95%)(95%),总体精确度(95.75%),总召回率(96.25%)(96.25%),整体F1分数(95.75%),准确性(98%)以及准确性(97%)的详细信息中包括了详细的份量。这些值提供了拟议方法的有效性的定量度量,从精度和计算效率方面展示了其优于现有技术的优势。我们的研究有助于提高夜间驾驶安全性并提高自动驾驶汽车技术。

通过基于深度学习的语义提高夜间驾驶安全性

通过基于深度学习的语义提高夜间驾驶安全性PDF文件第1页

通过基于深度学习的语义提高夜间驾驶安全性PDF文件第2页

通过基于深度学习的语义提高夜间驾驶安全性PDF文件第3页

通过基于深度学习的语义提高夜间驾驶安全性PDF文件第4页

通过基于深度学习的语义提高夜间驾驶安全性PDF文件第5页

相关文件推荐