Loading...
机构名称:
¥ 1.0

基于结构的药物设计 (SBDD) 旨在生成与特定蛋白质靶点结合的 3D 配体分子。现有的 3D 深度生成模型(包括扩散模型)已显示出对 SBDD 的巨大潜力。然而,在 3D 空间中精确捕捉分子生成所必需的蛋白质-配体相互作用非常复杂。为了解决这个问题,我们提出了一个新颖的框架,即结合自适应扩散模型 (BIND DM)。在 BIND DM 中,我们自适应地提取子复合物,即负责蛋白质-配体相互作用的结合位点的基本部分。然后,使用 SE(3) 等变神经网络处理选定的蛋白质-配体子复合物,并将其传输回复合物的每个原子,以通过结合相互作用信息增强靶标感知的 3D 分子扩散生成。我们利用跨层级相互作用节点迭代此层级复合物-子复合物过程,以充分融合复合物与其相应子复合物之间的全局结合上下文。在 Cross-Docked2020 数据集上进行的实证研究表明,B IND DM 可以生成具有更逼真三维结构和更高蛋白靶标结合亲和力的分子,平均 Vina 评分最高可达 -5.92,同时保持适当的分子特性。我们的代码可在 https://github.com/YangLing0818/BindDM 获取。

基于结构的药物设计的结合自适应扩散模型

基于结构的药物设计的结合自适应扩散模型PDF文件第1页

基于结构的药物设计的结合自适应扩散模型PDF文件第2页

基于结构的药物设计的结合自适应扩散模型PDF文件第3页

基于结构的药物设计的结合自适应扩散模型PDF文件第4页

基于结构的药物设计的结合自适应扩散模型PDF文件第5页

相关文件推荐