I.心血管疾病,包括影响心脏或血管的一系列疾病,通常被称为心脏病。它包括影响心血管系统的各种疾病,冠状动脉疾病是最常见的形式,导致心脏病发作。该机器学习项目的重点是使用视网膜图像分析通过经常性神经网络(RNN)检测心脏问题。视网膜特征与心血管健康之间的潜在联系引发了人们对使用视网膜成像作为诊断工具的兴趣。由于视网膜是具有类似于循环系统的血管结构的神经组织,因此视网膜血管中的异常可能表明心脏问题潜在的心脏问题。视网膜血管结构与心血管系统具有相似性,视网膜血管的微血管变化可以表明全身循环系统问题,包括与心脏有关的情况。复发性神经网络(RNN)是一种人工神经网络,旨在处理顺序数据并随着时间的推移识别模式。与传统的神经网络不同,RNN具有在网络中形成周期的连接,从而使它们可以保留以前输入的记忆。本研究旨在通过利用RNN来提高心脏病检测的准确性和效率,RNN特别擅长处理顺序数据。这项研究很重要,因为它提出了一种非侵入性且可能具有成本效益的方法来早期发现心脏病。如果成功,将视网膜图像作为诊断工具可以提供主动评估心血管健康的方法。
主要关键词