多发性骨髓瘤是全球第二常见的血液系统恶性肿瘤,发病率高和死亡率。尽管它被认为是一种无法治愈的疾病,但对这种肿瘤的了解增强导致了新的治疗方法,从而改善了患者的预期寿命。在临床试验,前瞻性注册和现实世界中的不同研究中,已经通过不同的研究生成了大量数据,这些研究已纳入了实验室测试,流量细胞术,分子标记,细胞遗传学,诊断图像和治疗,并将其用于常规临床实践。在这篇综述中,我们描述了如何使用不同的人工智能模型来处理和分析这些数据,旨在提高准确性并转化为临床上的好处,允许对早期诊断和响应评估进行实质性改进,加快分析加快分析,速度加快分析,减少对操作员偏见的劳动力密集型过程,并提供更高的参数信息,并提供更多的参数信息。此外,我们确定了人工智能如何允许开发综合模型,以预测对治疗的反应以及实现无法检测到的不可检测的可衡量可测量的残留疾病,无进展生存期和整体存活的可能性,从而导致更好的临床决策,从而有可能提高患者的个性化治疗,可以改善患者的能态。总体而言,人工智能有可能彻底改变多个骨髓瘤护理,这对于在前瞻性临床队列中进行验证是必要的,并开发模型以纳入常规的日常临床实践。
主要关键词