Loading...
机构名称:
¥ 2.0

摘要:大型语言模型在机器人任务计划和任务分解的域中发现了效用。尽管如此,这些模型在任务执行中指导机器人的直接应用并非没有挑战。在处理更复杂的任务,与环境有效互动时遇到困难以及在此类模型直接生成的机器控制指令的实际可执行性中遇到困难。应对这些挑战,这项研究倡导实施多层大语言模型,以增强机器人在处理复杂任务方面的利用率。提出的模型通过整合多个大语言模型来促进任务的细致层次分解,其总体目标是增强任务计划的准确性。在任务分解过程中,引入了视觉语言模型作为环境感知的传感器。此感知过程的结果随后被吸收到大语言模型中,从而通过环境信息将任务目标融合在一起。这种整合反过来又导致了针对当前环境的特定特征量身定制的机器人运动计划。此外,为了增强大型语言模型的任务计划输出的可执行性,引入了语义一致性方法。此方法将任务计划描述与机器人运动的功能要求保持一致,从而确定了生成指令的总体兼​​容性和相干性。为了验证拟议方法的效果,使用智能无人车辆建立了一个实验平台。该平台是验证多层大语言模型在解决与机器人任务计划和执行相关的复杂挑战方面的提高效率的一种手段。

通过多层大语言模型增强机器人任务计划和执行

通过多层大语言模型增强机器人任务计划和执行PDF文件第1页

通过多层大语言模型增强机器人任务计划和执行PDF文件第2页

通过多层大语言模型增强机器人任务计划和执行PDF文件第3页

通过多层大语言模型增强机器人任务计划和执行PDF文件第4页

通过多层大语言模型增强机器人任务计划和执行PDF文件第5页

相关文件推荐

2024 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥10.0
2024 年
¥1.0
2025 年
¥2.0