Loading...
机构名称:
¥ 3.0

摘要 锂离子电池因其高能量和高功率密度而被广泛应用于汽车工业(电动汽车和混合动力汽车)。然而,这也带来了新的安全性和可靠性挑战,需要开发新型复杂的电池管理系统 (BMS)。BMS 可确保电池组安全可靠地运行,要实现这一点,必须求解一个模型。然而,目前的 BMS 并不适合汽车行业的规范,因为它们无法在实时速率和广泛的操作范围内提供准确的结果。因此,这项工作的主要重点是开发一种混合动力双胞胎,如 Chinesta 等人所介绍的那样。 (Arch Comput Methods Eng(印刷中),2018。以满足新一代 BMS 的要求。为此,三种降阶模型技术被应用于最常用的基于物理的模型,每种技术针对不同的应用范围。首先,使用 POD 模型来大大减少伪二维模型的仿真时间和计算工作量,同时保持其准确性。通过这种方式,可以节省时间和计算资源,同时进行电池设计、参数优化和电池组仿真。此外,还研究了它的实时性能。接下来,利用稀疏-固有广义分解 (s-PGD) 从数据构建回归模型。结果表明,它可实现带有电池组的整个电动汽车 (EV) 系统的实时性能。此外,由于获得的代数表达式简单,该回归模型可在 BMS 中毫无问题地使用。使用系统仿真工具 SimulationX(ESI ITI GmbH)演示了采用所提方法的 EV 仿真。德国德累斯顿)。此外,使用 s-PGD 创建的数字孪生不仅可以进行实时模拟,还可以根据实际驾驶条件和实际驾驶周期调整其预测,从而实时更改规划。最后,开发了一种基于动态模式分解技术的数据驱动模型,以提取在线模型来纠正预测和测量之间的差距,从而构建出第一个(据我们所知)能够从数据中自我纠正的锂离子电池混合孪生。此外,由于该模型,上述差距在驾驶过程中得到了纠正,同时考虑到实时限制。

科学艺术与手工艺(SAM)

科学艺术与手工艺(SAM)PDF文件第1页

科学艺术与手工艺(SAM)PDF文件第2页

科学艺术与手工艺(SAM)PDF文件第3页

科学艺术与手工艺(SAM)PDF文件第4页

科学艺术与手工艺(SAM)PDF文件第5页