Loading...
机构名称:
¥ 26.0

本论文旨在通过明确推理其模型与现实世界之间的差距,奠定必要的基础,使自主系统能够在复杂、变化和不确定的环境中确保自身安全。它首先介绍了一套新颖的鲁棒最优控制公式和算法工具,允许在时变、多智能体系统中进行可处理的安全分析,以及在部分未知环境中进行安全的实时机器人导航;这些方法在大型无人机交通模拟和物理四旋翼平台上得到了演示。此后,它借鉴贝叶斯机器学习方法将基于模型的保证转化为高置信度保证,根据有关物理系统和周围智能体的证据变化来监控预测模型的可靠性。该原则首先应用于通用安全框架,允许对无人机等安全关键型机器人系统使用基于学习的控制(例如强化学习),然后结合认知科学和动态博弈论的见解,实现安全的以人为本的导航和交互;这些技术在实体四旋翼飞行器(在未建模的风中和人类行人中飞行)和模拟高速公路驾驶中得到展示。论文最后讨论了未来的挑战和机遇,包括安全分析和强化学习之间的衔接,以及围绕学习和适应“闭环”的必要性,以便自信地部署日益先进的自主系统。

以人为本的博弈论安全保障

以人为本的博弈论安全保障PDF文件第1页

以人为本的博弈论安全保障PDF文件第2页

以人为本的博弈论安全保障PDF文件第3页

以人为本的博弈论安全保障PDF文件第4页

以人为本的博弈论安全保障PDF文件第5页