Loading...
机构名称:
¥ 1.0

成簇的规律间隔短回文重复序列 (CRISPR) - CRISPR 相关蛋白 (Cas) 技术已应用于植物育种,主要用于改良单个或多个性状的基因 1 – 4 。本文我们表明,这项技术还可用于重组植物染色体。利用来自金黄色葡萄球菌 5 的 Cas9 核酸酶,我们能够在拟南芥中诱导异源染色体之间 Mbp 范围内的相互易位。值得注意的是,在没有经典的非同源末端连接途径的情况下,易位频率大约高出五倍。利用 Cas9 核酸酶的卵细胞特异性表达和连续的批量筛选,我们能够分离可遗传事件并建立易位纯合的品系,单个品系的频率高达 2.5%。通过分子和细胞学分析,我们证实了在拟南芥 1 号和 2 号染色体之间以及 1 号和 5 号染色体之间获得的染色体臂交换是保守的和相互的。诱导染色体易位可以有针对性地模拟基因组进化或染色体修改,固定或打破不同染色体上性状之间的遗传连锁。植物基因组的受控重组有可能改变植物育种。鉴于养活快速增长的人口的挑战以及气候变化对农业的影响,对新作物品种的需求日益增加。随着传统育种已达到极限,使用基因组编辑工具对作物进行理想性状改造正成为主要关注点 6 。应用 CRISPR-Cas 系统定向诱导位点特异性双链断裂 (DSB) 使得基因编辑既可用于植物基础研究,也可用于农业性状的产生和改良 7 。在包括植物在内的多细胞真核生物中,DSB 的修复主要由两种途径介导,非同源末端连接 (NHEJ) 和同源重组 8 。通过易错的 NHEJ 进行的修复通常与断裂位点处的序列信息丢失有关,而同源重组主要导致无错修复 9 。在植物中,NHEJ 是体细胞组织中普遍的修复途径。NHEJ 可进一步细分为经典 NHEJ (cNHEJ) 和替代 NHEJ (aNHEJ) 途径 10 。在 cNHEJ 的情况下,断端直接重新连接,有时会导致断裂位点处的小插入或缺失 (indel)。aNHEJ 利用靠近断裂位点的微同源性并依赖于聚合酶 theta,导致与插入部分相关的微同源性之间的序列信息缺失 11,12 。一次诱导多个 DSB 可以通过 NHEJ 将不相关的断裂末端连接起来,从而导致基因组中复杂的重排。

CRISPR–Cas9 介导的拟南芥可遗传染色体易位的诱导

CRISPR–Cas9 介导的拟南芥可遗传染色体易位的诱导PDF文件第1页

CRISPR–Cas9 介导的拟南芥可遗传染色体易位的诱导PDF文件第2页

CRISPR–Cas9 介导的拟南芥可遗传染色体易位的诱导PDF文件第3页

CRISPR–Cas9 介导的拟南芥可遗传染色体易位的诱导PDF文件第4页

CRISPR–Cas9 介导的拟南芥可遗传染色体易位的诱导PDF文件第5页

相关文件推荐

2020 年
¥2.0
2025 年
¥1.0