了解纳米级热传播的基本原理对于下一代电子产品至关重要。例如,已知层状材料的弱范德华键会限制其热边界导率 (TBC),从而成为散热瓶颈。本文提出了一种新的非破坏性方法,使用时间分辨的光致热应变 X 射线测量来探测纳米级晶体材料中的热传输。该技术通过测量光激发后 c 轴晶格间距的变化,直接监测晶体中随时间的温度变化以及随后跨埋层界面的弛豫。研究了五种不同的层状过渡金属二硫属化物 MoX 2 [X = S、Se 和 Te] 和 WX 2 [X = S 和 Se] 的薄膜以及石墨和 W 掺杂的 MoTe 2 合金。在室温下,在 c 平面蓝宝石衬底上发现 TBC 值在 10–30 MW m − 2 K − 1 范围内。结合分子动力学模拟,结果表明高热阻是界面范德华键合较弱和声子辐射度较低造成的。这项研究为更好地理解新兴 3D 异质集成技术中的热瓶颈问题奠定了基础。
主要关键词