即使经过多年对随机增长模型(如首次和最后一次渗透和定向聚合物)的研究,许多问题在技术上仍然是神秘的或遥不可及的。例如,除了保证通过时间/自由能的线性增长率的基本形状定理之外,还存在亚线性波动,其渐近性尚未建立。即使在平面设置中,对于该设置,推测图景很清晰,但一般工具远不能使其严格。这与可积模型形成鲜明对比,可积模型的波动指数只是已证明的一小部分。在本文中,我们考虑了三个广泛研究的随机增长模型:首次渗透(FPP)、最后一次渗透(LPP)和随机环境中的定向聚合物。虽然这些模型在衡量增长的方式上有所不同,但它们都拥有一个大数定律,即增长率是渐近线性的。然而,更神秘的是亚线性波动。在二维版本中,这些模型被认为属于 Kardar–Parisi–Zhang 普适性类 [30],尤其是增长涨落的阶数为 n 1 / 3。除了 LPP 和定向聚合物具有精确可溶性的特殊情况外,严格的结果与这一目标相去甚远,在某些情况下甚至不存在。本文的目标有两个。首先,我们描述一种通用策略,用于证明随机变量序列(在定义 2.1 中明确定义)涨落阶的下界。该方法改编自第二作者最近在 [23] 中开发的技术。它很通用,因为它可以用于由独立同分布随机变量组成的各种问题,其中不对这些变量的共同分布做出任何假设。其次,我们应用该方法研究平面 FPP、LPP 和定向聚合物的生长涨落。在这三种情况下,我们都能证明 √ log n 阶波动的下限。此外,对于 FPP,我们扩展了形状
主要关键词