背景:要了解单个神经元中的信息编码,需要分析阈下突触事件、动作电位 (AP) 及其在不同行为状态下的相互关系。然而,由于突触事件的信噪比不佳、频率高、幅度波动和时间过程多变,检测行为动物的兴奋性突触后电位 (EPSP) 或电流 (EPSC) 仍然具有挑战性。新方法:我们开发了一种突触事件检测方法,称为 MOD(机器学习最优滤波检测程序),它结合了监督机器学习和最优维纳滤波的概念。要求专家手动对短时间的数据进行评分。该算法经过训练以获得维纳滤波器的最优滤波系数和最优检测阈值。然后使用最优滤波器处理评分和未评分的数据,并将事件检测为高于阈值的峰值。结果:我们在小鼠体内空间导航过程中用 EPSP 轨迹测试 MOD,并在增强递质释放的条件下用切片体外 EPSC 轨迹测试 MOD。受试者工作特征 (ROC) 曲线下面积 (AUC) 平均为体内数据集 0.894 和体外数据集 0.969,表明检测精度高、效率高。与现有方法的比较:当使用 (1 − AUC) − 1 指标进行基准测试时,MOD 在体内数据集上的平均性能比以前的方法 (模板拟合、反卷积和贝叶斯方法) 高出 3.13 倍,但显示出相当 (模板拟合、反卷积) 或更高 (贝叶斯) 的计算效率。结论:MOD 可能成为大规模实时分析突触活动的重要新工具。
主要关键词