Loading...
机构名称:
¥ 1.0

计算系统的能力正与其试图理解的海量视觉数据展开一场“军备竞赛”。在自动驾驶、机器人视觉、智能家居、遥感、显微镜、监控、国防和物联网等一系列应用中,计算成像系统记录和处理大量人类无法看到的数据,而是由基于人工智能 (AI) 的算法进行解释。在这些应用中,深度神经网络 (DNN) 正迅速成为视觉数据处理的标准算法方法 1-3。这主要是因为 DNN 在所有领域都取得了最先进的结果,而且往往领先优势很大。深度学习的最新突破得益于现代图形处理单元 (GPU) 的巨大处理能力和并行性,以及海量视觉数据集的可用性,这些数据集使得 DNN 能够使用监督机器学习策略进行高效训练。然而,运行日益复杂的神经网络的高端 GPU 和其他加速器对功率和带宽的需求巨大;它们需要大量的处理时间和笨重的外形尺寸。这些限制使得在边缘设备(如摄像头、自动驾驶汽车、机器人或物联网外设)中采用 DNN 具有挑战性。以自动驾驶汽车中的视觉系统为例,它们必须使用有限的计算资源即时做出稳健的决策。高速行驶时,瞬间的决策可以决定生死。事实上,几乎所有边缘设备都会受益于更精简的计算成像系统,提供更低的延迟和尺寸、重量和功率的改进。DNN 的两个阶段(训练和推理)的计算要求非常不同。在训练阶段,DNN 被输入大量标记示例,并使用迭代方法,其参数针对特定任务进行优化。训练完成后,DNN 用于推理,其中某些输入数据(例如图像)在前馈过程中通过网络发送一次,以计算所需的结果。在某些应用中,GPU 用于推理,但由于上述原因,对于许多边缘设备而言,这是不切实际的。

深度光学和光子学在人工智能中的透视推理

深度光学和光子学在人工智能中的透视推理PDF文件第1页

深度光学和光子学在人工智能中的透视推理PDF文件第2页

深度光学和光子学在人工智能中的透视推理PDF文件第3页

深度光学和光子学在人工智能中的透视推理PDF文件第4页

深度光学和光子学在人工智能中的透视推理PDF文件第5页

相关文件推荐