帕金森病 (PD) 是一种神经退行性疾病,其特征是运动症状,包括早期声音产生改变。早期诊断不仅对于改善 PD 患者的生活质量至关重要,而且对于提高早期神经退行性疾病期间潜在的疾病改良疗法的有效性也至关重要,而当前的诊断工具往往会忽略这一窗口。在本文中,我们提出了一种通过领域自适应和自监督学习进行 PD 识别的更通用的方法。我们展示了所提出的方法在不同语言的不同数据集中的泛化能力。我们的方法利用 HuBERT,这是一个最初为语音识别训练的大型深度神经网络,并以自监督的方式在与目标群体(即老年人)相似的人群的未标记语音数据上对其进行进一步训练。然后对模型进行微调和调整,以用于多种语言的不同数据集,包括英语、意大利语和西班牙语。在四个公开可用的 PD 数据集上进行的评估证明了该模型的有效性,平均特异性为 92.1%,平均灵敏度为 91.2%。该方法可在大量人群中提供客观一致的评估,解决人类评估固有的差异性,并提供一种非侵入性、经济高效且方便的诊断选择。
主要关键词