Loading...
机构名称:
¥ 2.0

然而,这给我们带来了更重要的问题。既然退相干已在膨胀研究界得到相当广泛的研究,那么我们还能从本文研究的玩具模型中了解到什么呢?这正是我们认为量子计算复杂性可以发挥重要作用的地方。如果宇宙的时间演化确实可以描述为一个量子电路 [ 17 – 23 ],其中不同状态之间的每个转换都可以与量子复杂度 2 相关联,那么复杂性的动力学对于理解退相干在更一般场景中的工作方式很有用。换句话说,尽管可能可以在简单的玩具模型中明确研究光绝热扰动的退相干,但在存在高阶相互作用的情况下,事情通常会变得更加模糊。以我们在本文中提出的著名玩具模型为例。它本质上是纯高斯的,因此其中的可观测量和重测量模式之间完全没有(动量)模式耦合(除了 k , − k 的简单情况)。在这种情况下,很容易跟踪退相干,因为可以在这种情况下精确地研究系统。但是,请记住,广义相对论本质上是非线性的,因此,对于任何现实的模型构建,我们必须保留高阶相互作用项,这将导致可观测量和环境模式之间的额外混合。

早期宇宙是一个开放的量子系统

早期宇宙是一个开放的量子系统PDF文件第1页

早期宇宙是一个开放的量子系统PDF文件第2页

早期宇宙是一个开放的量子系统PDF文件第3页

早期宇宙是一个开放的量子系统PDF文件第4页

早期宇宙是一个开放的量子系统PDF文件第5页