Loading...
机构名称:
¥ 3.0

摘要:定向进化 (DE) 是一种强大的工具,可用于优化蛋白质适应特定应用。然而,当突变表现出非加性或上位性行为时,DE 可能效率低下。在这里,我们介绍了主动学习辅助定向进化 (ALDE),这是一种迭代机器学习辅助 DE 工作流程,它利用不确定性量化来比当前的 DE 方法更有效地探索蛋白质的搜索空间。我们将 ALDE 应用于对 DE 具有挑战性的工程领域:优化酶活性位点中的五个上位性残基。在三轮湿实验室实验中,我们将非天然环丙烷化反应所需产物的产量从 12% 提高到 93%。我们还对现有的蛋白质序列适应度数据集进行了计算模拟,以支持我们的论点,即 ALDE 比 DE 更有效。总体而言,ALDE 是一种实用且广泛适用的策略,可以解锁改进的蛋白质工程成果。关键词:蛋白质工程、定向进化、酶工程、原珠蛋白、卡宾、立体选择性、机器学习、贝叶斯优化、主动学习、不确定性量化

主动学习辅助定向进化

主动学习辅助定向进化PDF文件第1页

主动学习辅助定向进化PDF文件第2页

主动学习辅助定向进化PDF文件第3页

主动学习辅助定向进化PDF文件第4页

主动学习辅助定向进化PDF文件第5页

相关文件推荐

2025 年
¥1.0
2023 年
¥1.0
2005 年
¥1.0
2003 年
¥36.0
2024 年
¥7.0
2024 年
¥26.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0