由于缺乏适当的生物标志物来进行准确的诊断和治疗,精神疾病会造成严重的痛苦和功能障碍,从而导致社会和经济损失。生物标志物对于诊断、预测、治疗和监测各种疾病至关重要。然而,它们在精神病学中的缺失与大脑的复杂结构和缺乏直接监测方式有关。本综述探讨了脑电图 (EEG) 作为识别精神生物标志物的神经生理学工具的潜力。EEG 可以无创地测量大脑的电生理活动,并用于诊断神经系统疾病,例如抑郁症、双相情感障碍 (BD) 和精神分裂症,并识别精神生物标志物。尽管进行了广泛的研究,但由于测量和分析的限制,基于 EEG 的生物标志物尚未在临床上使用。EEG 研究揭示了抑郁症的频谱和复杂性测量、BD 中的脑波异常以及精神分裂症中的功率谱异常。然而,目前临床上还没有基于脑电图的生物标志物用于治疗精神疾病。脑电图的优点包括实时数据采集、无创性、成本效益和高时间分辨率。低空间分辨率、易受干扰和数据解释复杂等挑战限制了其临床应用。将脑电图与其他神经成像技术、先进的信号处理和标准化协议相结合对于克服这些限制至关重要。人工智能可以增强脑电图分析和生物标志物发现,通过提供早期诊断、个性化治疗和改进的疾病进展监测,有可能改变精神病治疗。
主要关键词