摘要。在本文中,我们研究了权重的代数免疫(AI)完美平衡(WPB)函数。在以前文献中显示了两类WPB函数的AI的下限后,我们证明了WPB N-可变量函数的最小AI是恒定的,对于N≥4的2。然后,我们在4个变量中计算WPB函数的AI的分布,并估计8和16个变量中的一个。对于N的这些值,我们观察到绝大多数WPB函数具有最佳的AI,并且我们无法通过随机采样来获得AI-2 WPB函数。最后,我们解决了具有有界代数免疫力的WPB函数的问题,从[GM22C]利用了构造。特别是我们提出了一种以最小AI生成多个WPB函数的方法,并且我们证明[GM22C]中表现出高非线性的WPB函数也具有最小的AI。我们以构造为WPB功能提供了较低的AI,并以AI至少N/ 2- log(n) + 1的所有元素为例。