摘要:锂离子电池的生命周期和降解机制的准确预测对于它们的优化,管理和安全性至关重要,同时预防潜在失败。然而,由于复杂和动态的细胞参数以及用法条件下的广泛变化,典型的状态估计是具有挑战性的。基于物理学的模型需要由于广泛的参数要求而导致的准确性和复杂性之间的权衡,而机器学习模型则需要大型培训数据集,并且在概括地看不见的情况时可能会失败。为了解决这个问题,本文旨在集成基于物理的电池模型和机器学习模型,以利用其各自的优势。这是通过应用称为物理信息的神经网络(PINN)的深度学习框架来实现的。通过整合FICK从单个粒子模型扩散定律的偏微分方程来预测锂离子细胞的电荷状态和健康状况。结果表明,PINN可以在0.014%至0.2%的范围内估计电荷状态,而健康状况的范围为1.1%至2.3%,即使培训数据有限。与常规方法相比,Pinn的复杂性不那么复杂,同时仍将物理定律纳入训练过程,从而产生了足够的预测,即使对于看不见的情况也是如此。
主要关键词